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(4), and (6). The guard plane half-width, d, is then de-

termined by (5). After choosing k~, then ~, F(k’, ti), and

.E(k’, 6) are obtained by (8), which now defines b, the

strip half-width, from (7). Using (11), kz is readily

found, from which K(kJ, K(k2’), and in turn C are

determined.

Fig. 6 shows C, the capacitance of the strip-line per

unit length, as a function of b, the half-width of the

strip, for several values of d, the half-width of the

ground planes. For values of b less than 1.00, the curves

for d having values of 1.250 and infinity agree to about

one-quarter of one per cent. The asymptotic values arise

from exact expressions for the capacitance of parallel

plate condensers.

It therefore follows that for d> 1.25 and d > b+ O.25,

the exact capacitance and approximate value obtained

by assuming infinite width ground planes agree within

one-quarter of one per cent. A similar statement may

be made for the characteristic impedance, since

RO= ~~/c. The approximation is also valid for

smaller values of d providing a more severe restriction

is placed on the magnitude of b.
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Fig. 6—Capacitance per unit length for a strip-line having a strip
of width 2b centered between two ground planes each of width
2d. The ground planes are separated by unit distance.

Resonant Frequencies

in Radial

D. C.

of Higher~~Order Modes

Resonators

STINSONt

Summary—A wunmary of the relevant work on radial line dk.-

continuities and radial line resonators is presented. A step-type dis-

continuity is analyzed using an integral equation formulation and the

results are applied to the calculation of the resonant frequencies of a

radial resonator. This method is verified by experiment and com-

pared with the foreshortened-line approximation and with the meth-

ods of Marcuvitz and Goddard, whose work is satisfactory for the

lowest-order TM mode. However, the present method is the only

one which is equsdly applicable to the calculation of the resonant

frequencies of TM modes possessing higher-order radial variations.

INTRODUCTION

~ADIAL LINE discontinuities have been consid-

R
ered quite completely by Whinneryl and by

Bracewell.2 The former presents his data in the

form of curves and takes into account such factors as

the proximity of a shorting cylinder near the disconti-

~ Elect. Res. Lab., Univ. of Cali~., Berkeley, Calif.
‘J. R. Whinnery, “Radial line dlscontinuities, ” Elec. Lab., Gen-

eral Electric Co., D. F. #46293; June 22, 1944.
J. R. Whinnery and D. C. Stinson, “Radial line discontinuities, ”

PROC. IRE, vol. 43, pp. 46-51; January.
2 R. N. Bracewell, “Step discontinuities in disk transmission

lines, ” PROC. IRE, vol. 42, pp. 1543–1548; October, 1954.

nuity and the effect of higher-order, nonpropagating

modes. The latter treats only the simple step disconti-

nuity, with the step facing either the inner region or

the outer region, and takes into account radial vari-

ations by a cylindrical spread factor which is given by

families of curves. These two papers form a very com-

plete picture of radial line discontinuities.

Radial resonators have been considered by several

approximate methods,’–’ but these ignore the disconti-

nuity capacitance. Ordinarily, the discontinuity capaci-

tance is of the same order of magnitude as the capaci-

tance of the capacity loading of the gap, region A, in

Fig. 1, if one considers the resonator as a foreshortened

radial or coaxial line resonator. A better method con-

siders the modes in both regions and matches them

across the aperture, ~ = a. This method has been used

3 F. E. Terman, “Radio Engineers’ Handbook, ” McGra\v-Hill
Book Co., Inc., New York, N. Y., p. 268; 1943.

4 S. Ramo and J. R. Whinnery, “Fields and Waves in Modern
Radio, ” John Wiley and Sons, Inc., New York, N. Y., pp. 404-412;
1944.

5 J. C. Slater, “Microwave Electronics, ” D. Van Nostrand Co.,
Inc., New York, N. ‘Y., p. 234; 1950.
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by Goddard6 and Marcuvitz7 and is exact until they

introduce approximations for the discontinuity admit-

tance and the Bessel functions.

However, the treatment of Marcuvitz and Goddard

applies only to the lowest-order radial mode, i.e.,

Tli4_010mode. Their papers also include no experimental

checks on the approximations involved. Further, the

infinite-series method used by Goddard does not give

results which are as easy to apply or as accurate as

results obtained by using the integral-equation method,

which he mentions but does not use. In the work to

follow, the integral-equation method will be used to

obtain the discontinuity capacitance of a radial line

with a simple step and this result will then be applied

to the calculation of the resonant frequencies of a radial

resonator. Since the integral-equation method has been

applied to many problems, the theoretical treatment will

be very brief. A more detailed and rigorous treatment

of this problem can be found elsewhere.8

I----bl
Fig. l—Cross section of a radial resonator. Regions A and B

connected at the aperture, indicated by the dotted lines.

FORMULATION OF THE INTEGRAL EQUATIONS

are

The geometrical structure of the resonator dictates

that the only nonvanishing field components in cylindri-

cal co-ordinates be H+, E., E,, the last being absent for

the principal mode. The differential equations which

govern the spatial behavior of H4, ET, and E= are

–jk!?r(?’, z) = : H$(?’, z)

im%(t’, z) = ();++ H@(?’, z), (1)

e L. S. Goddard, “A method for computing the resonant wave-
length of a type of cavity resonator, ” Proc. Cambridge Phil. Sot., vol.
41, part 2, pp. 160-176; August, 1945.

7 C. G. Montgomery, R. H. Dicke, and E. M. Purcell, “Pr~nci-
cJes of Microwave Circuits. ” McGraw-Hill Book Co.. Inc.. New
York, N. Y., ch. 8; 1948. ‘

,,

8 Elec. Res. Lab. Rep., Univ. of Calif., Series No. 60, Issue No.
105, December 15, 1953.

where k = u(p~)’1’ = (27T/h), u = angular frequency,

A = free-space wavelength, p = permeability of free space,

~ = dielectric constant of free space, and j = ( — 1)1/2. The

principal mode results from (1) when the z dependence

vanishes. Eqs. (1) must be solved subject to the follow-

ing boundary conditions:

EZ=O on r=a, ds]z]sz

E.=fl on r=b, o~lz~~~

EV=O on ~z[=d,
(2)

()~f7~a

EV=O on lz~=k, asvsb.

Also Ez and H4 are continuous at

“=ao=lzl=d. (3)

A continuous solution for the entire resonator is con-

tingent upon equality of the respective tangentia;[ com-

ponents of electric and magnetic field across the aper-

ture between the two regions according to (3), This

insures the continuity of the normal component, E,.

Tangential and normal refer to the space location of the

field components relative to the direction of propagation

of energy (radially outward). The scalar function H4 at

any point in either region can be expressed in terms of

integrals involving Ez in the aperture. The continuity

relation (3) results in an integral equation to determine

the aperture field E,, and thence the electromagnetic

field everywhere in the resonator. Alternatively, we may

express the scalar function E, at any point in either

region in terms of integrals involving H4 in the aperture.

The continuity relation (3) again gives an integral equa-

tion to determine the aperture field H4,

We may also introduce a principal-mode voltage and

current in each region as follows: the voltage at any

cross section in the resonator is defined as the negative

line integral of E% in the z direction while the current

at any cross section is defined as the line integral of the

principal-mode part of H+ about the z axis. The func-

tions thus defined satisfy the transmission line equa-

tions ordinarily given for radial transmission lines.’ The

equations are not uniform since both the characteristic

impedance and propagation constant are functions of

the radius; nevertheless, they do make possiblle the

introduction of an equivalent radial transmissicln line

to represent the principal-mode voltage and current in

each region and a lumped shunt admittance to represent

the higher-order nonpropagating modes at the disconti-

nuity between the two regions.

The solutions of (1) consistent with the boundary

conditions (2) in the two regions are as follows:

Region A

i74~ = AJ,(kr) + S .4wJ1(L7’)ci~(z)
n,==1

[
E.A = : ~,ky,(kf’) + ~ ~mhn~,(k.t’)%(.z’) 1 (4)

jue m=l
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L = m~Km~d–l

KmA = [(2d/wzk)Z – 1]1/z

an(z) = cos (mrzd–l)

~*(7) = –
s

d &*& = – 2 k~zl ,Y,(kr) (@e)-’

–d

1(4’) = 27rrAi)Jl(k?’).

Region B

iZ+~ = B@,(k7) + 2 B,LQ1(7. ?) Bn(z)
n= 1

[
EZB = 2- ~ok@(k?’) + ~ %/.~O(’YI#’)8n(~)

jox ,,==1 1
-y. = mrKmBIz-l

K.B = [(217/nx)Z – 1]11~

p.(z) = Cos(mrzk’)
(5)

Qt(’ynr) = JL(7nr) – Jo(7nb)fvi(7.Y) No-’(7nb)

Q,(kY) = JJkr) – JO(kb)Ni(kr)A’,-’( kb), i = O, 1.

s

h
p(y) = – EZBdz = – 2 khBo(k7) (yiJe)-l

–h

P(r) = 27rrBoQ,(k7).

We may now use the orthogonality properties of the

circular functions to solve (4) and (5) for the coefficients

Am and B. in terms of E.. These coefficients are then

substituted back into the expressions for H@~ and H@B

in (4) and (5) after replacing A o and BO by the corre-

sponding expressions for the principal-mode currents.

Now, since E70 is continuous at the aperture according

to (3), we may equate the expressions just derived and

multiply by 2~a to obtain

1A+ j2aw, ~ Eom f ‘ ~(z’)am(z’)am(z) dz’
m=1 –d

d
—— 1’ + j2atm Y Don

s

e(z’)&Jz’)&@)dz’,
n= 1 –d

r=a, O~lzl =d, (6)

where

s(.) = E*-’(a, 2) = Ez~(a, 3)

Eom = ~l(~~a) [K~-4Jo(h,.a) ]–lWZ-l

Do. = Ql(~~a) [K.BQO(y,,a) I–17L-1.
Since Es is continuous at r = a from (3), it may be seen

from the expressions for the voltages in (4) and (5) and

the definition of ~(z) that

s

d

VJ4=VB= V=_ ~(z)dz at 7 = a.
–d

Moreover, the discontinuit}- admittance is just the

9 Ramo and W-hinnery, op. cit., p. 37.5.

discontinuity current, 1A – IB, divided by V.10 Conse-

quently, we may construct a variational principle for

the discontinuity admittance by multiplying the in-

tegral equation (6) by E(z), integrating over ( – d, d),

and then dividing the resultant equation by ~~.~~(z)dz ]z.

We obtain

(7)

which expresses the discontinuity capacitance in terms

of the aperture electric field ~(z), which is homogeneous

in ~(z), and which is stationary with respect to the first

variation of ~(z) about its correct value determined

by (6).

Let us now derive a similar expression for the dis-

continuity impedance in terms of the aperture magnetic

field ~(z). To do this we return to (4) and (5) and solve

for Am and B. in terms of H@, and Ao and BO in terms

of the corresponding expressions for the principal-mode

voltages. Since E, is also continuous at the aperture

according to (3), we may equate these expressions just

derived and, after multiplying through by 2jtied2, ob-

tain

. nd

– jw~dl’ + 27r ~ EO.,–l J “WO%W4ZM’
m=l d –’

d
—– – jawi~V + 27rti2 ~ Don–l

s

3W)PJS’)A(ZW,

??=l –d

r=a,f)~]zls~, (8a)

. nh

O = – jwd6V + 2ir82 ~ Don–l j 3c(z’)pn(z’)&(z) dz’,
.=1 ~ –h

where

~(z) = H@A(a, z) = H@B(a, 2),

and where (2) was used to obtain (8 b). To derive our

second variational principle, we multiply the expres-
sions in (8) by W(Z) and integrate each over its respec-

tive range of validity. Recognizing that

sd

K(Z) dz = dIA (~a)–l
–d

sh

X3(z) dz = lzIB(7ra)-*
–h

and also noting that the expression resulting from (8b)

m The ~-oltages defined here are double those defined in reference
7 and, consequently, the discontinuity capacitance will be half that
obtained in reference 7 since the currents are the same. .Naturally,
the resonant frequencies of the resonator of Fig. 1 will be the same
as those of the resonator in reference 7 since the modes are the same.
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is still equal to zero, we ma>- add it to the expression

resulting from (8a) and divide through by [~_~~(z)dz ]~

to obtain

– +Vs-’ = 7r(j0t)-’~-’23

where

s

d

s

h
cJ = &l W(z)dz – /1–1 X3(z)& = (~a)–l(IA

–h

= (ra)-:~JT.

h
~ = j~-z ~ Don-l [s 12

wqz)~n(z)dz
n,=1 –h

d

–d–z ~ Eo.–l [s 1
2

3c(z)a~(z)dz .
m=1 –d

Thus we find that

Cd-l = – z(aC)-ls-2~.

F)

(9)

Ytre have now derived the two desired variational

principles, (7) and (9), for the discontinuity capaci-

tance. If we substitute the true ~(z) into (7) and the

true K(Z) into (9), obtained from (6) and (8), respec-

tively, both variational principles will yield the same

Va1U(2 fOr cd. However, the two values of cd resulting

from approximate ~(z) and 3c(z) will differ, but both

will be close to the true cd if the trial functions are

chosen appropriately. The errors in cd are of the order

of magnitude of the squares of the errors in 8(z) and

K(Z). Since the stationar>- quantity is real, (7) will yield

a value below the true one while (9) will yield a value

above it.ll,lz It may also be shown that the first vari-

ation of the discontinuity capacitance vanishes with the

first variation of ~(z) and X(Z), but the proof will be

omitted here.

APPLICATION OI? THE VARIATIONAL PRINCIPLIX

.&t this point one would ordinarily assume ~(.z) as a

Fourier cosine series in the interval ( – d, d) and obtain

cd from (7) in terms of the Fourier coefficients. .\pplica-

tion of the variational principle would then reduce the

expression for Cd to a simpler one. Similarly, X(z)

would be obtained in terms of the Fourier cosine series
for ~(z) and the resulting expression would be substi-

tuted into (9); again application of the variational

principle would r(2SUlt k a Skpk?r (3XpreSSiOII fOr Cd–l.

Since these simpler expressions are exact, approxima-

tions may be effected to any desired degree. However,

for a first approximation, one might consider only the

leading term in each of the expressions and thus avoid

further calculations, If we do this, we find that when the
aperture electric field is equal to a constant, G, (7)

becomes

n H, Levine and C. H. Papas, ‘{Theory of the circular diffraction

antenna, ” JotLr. AP.P1. Phys., \,oI. 22, pp. 29–43; January, 1951.
Iz J. W. Miles, “The equivalent circuit for a plane discontinuity

in a cylindrical wave guide, ” PROC.IRE, vO1. 3-L, pp. 728–743 ; Oc-
tober, 1946.

.
cd = – 2Uer-’ ~ nDows.o(ti), (lo)

n= 1

where s.o(~) = n–3&2 sin2 (nm3).

In order to evaluate Cd–l using (9), we must deduce

an appropriate expression for X(Z). We may do this by

solving for .iY+B in (5) in terms of ~(z) and tb[en let

r = a to obtain

x!(z) = (2ma)–lIB + jcmr-lG ~ DoJroJ3.(z),
n= 1

where bo. = 2h (nT)–l sin (nm~). We now insert this value

of K(z) into (9) and find that the expression fc,r Cd–1

reduces to the following, provided one considers only

the leading terms:

[ 1
–1

cd-’ = – 2(ac)-1d2 i i Do.bo.bop

?1==1 P=l

.

n== 1

(11)
n=l *=1

.#I1

It may be seen that Cd as given by (11) is larger than

cd as given by (10) by the term involving the double

summation. .Mthough this term is not as small as de-

sirable, experimental evidence shows that the first term

in (11) gives satisfactory results. Considering the first

term then and simplifying it by separating the part

containing the Bessel functions, we find that

[ 1cd = = ~0 (6) – S (1 + }zDo.) STLO (~) , (12)
# n=l

where SO(8) = ~~. ~s.o(~) is the lowest-order Hahn’8 func-

tion. These functions have been considered quite

thoroughly by Goddard,l& who defines a general class of

functions that for low orders reduce to the Hahn func-

tions. He also derives recurrence relations for his func-

tions and tabulates the most common ones.

RESONANT FREQUENCIES

An electromagnetic system is considered re:sonant

when the average electric and magnetic energies ‘within

the system are equal. Since by an energy theorem15 the

total susceptance of an electromagnetic system is pro-

portional to the difference between the average electric

and magnetic energies stored in the system, it follows

that a resonant frequency is one that causes the total

susceptance to vanish. Let us consider the tot:d sus-

ceptance of the reaonatcm at the discontinuity. ‘1’he sus-

ceptance looking in the direction of decreasing radius

13Ftr. C. Hahn, “.1 new method for the calculation 0[ cavity
resonators, ” Jour. Apfi Phys. vol. 12, pp. 62-68; January, 1[94.1.

14L. S. Goddard, “On the summation of certain trigonometric
series, ” Pmc. Cambridge Phil. Sot., vol. 41, part 2, pp. 145–161;
August, 1945.

15 Montgomery, Dicke and Purcell, oP. cit., P. 13.5.
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is just the input susceptance of the inner radial trans-

mission line while the susceptance looking in the direc-

tion of increasing radius consists of the sum of the dis-

continuity susceptance and the input susceptance of the

outer radial transmission line. However, we already

have the resonance condition from the expression for ~

in (9) if we change the form slightly as below

I’d = 1“-11~ + V–1P = o.

If we divide through by the characteristic admittance of

region B, we can obtain the resonance equation in

terms of relative admittances with the characteristic

admittance of region B as the base. This form is much

simpler to solve graphically since multiplying constants

are kept to a minimum. Following these suggestions

and using the values for the admittances from (12), (4)

and (5), respectively, the resonance equation reduces to

Ql(ka)QO-’(ka) = &’Jl(ka)lO-’(lia) + 2klz~-35’0(~), (13)

where the term in (12) involving Do. has been dropped.

If we multiply each side of (13) by –jralz–@2p-112,

then the first term is the admittance of the outer radial

line, the second term is the negative admittance of the

inner radial line, and the last term is the negative dis-

continuity admittance when one ignores radial vari-

ations. Since the only approximation in (13) is the one

concerning radial variations of the discontinuit}- capaci-

tance, (13) should be the simplest expression which is

likely to yield reasonable results under general condi-

tions. The disadvantage to using (13) lies in the fact

that one must resort to a graphical solution, which in

this case is done by plotting each term of (13) versus

ka with the ratios b/a, d/h and lz/a as parameters. This

is illustrated in Fig. 2 for the radial TMO1O mode in a

resonator with b/a = 2. Since Y* and yB both behave as

periodic functions, the higher-order radial TM modes

may be found in the same manner by continuing the

curves to larger values of ka.

It is also interesting to note that the radial resonator

may be considered as a transition between a coaxial

and a cylindrical resonator, i.e., when 8 = O and 8 = 1,

respectively. This follows directly from resonance equa-

tion (13) in the following manner. When ~ is zero the

relative admittance of region B, yB, becomes infinite.

Consequently, the pole~ of yE give the resonant frequen-

cies of the radial resonator when 6 is zero. However, the
poles of yB are just the solutions of Jo(ka) NO (kb)

– Jo(kb) No(ka) = O, which is the equation whose roots

determine the resonant frequencies of a coaxial reso-

natorlG sustaining TM modes possessing only radial vari-

ations. On the other hand, when rSapproaches unity, the

discontinuity capacitance vanishes and we are left with

YE= yA, which reduces to the equation ordinarily given

for the resonant frequencies of cylindrical TMofio

modes .1’

18H. 13. Dwight, “Table of roots for natural frequencies in co-
axial type cavities, ” Jour. Math. Phys., vol. 27, pp. 84-89; April,
1948.

1?RamCI and Whinnery, op. cd., p. 337.

If one wishes a more accurate solution to the reso-

nance equation (13), it is possible to use values for the

discontinuity capacitance obtained from references 1 or

2. This has not been done here since (13) is sufficiently

accurate for most purposes. In fact, as mentioned in the

Introduction, most writers have assumed that all the

dimensions of the resonator are small compared with

wavelength and have used approximate forms of (13).

6

YE. 2pyf4 ,oyA 7yA 5yA 3yA 2yA yA

-o .5 1.0 1.5
\

.0 2.5

ka

Fig. 2—Presentation of the resonance equation, y~(ka) = ~-lyA(ka)
+Ya(8), for the radial l“MOIO mode in the resonator of Fig. 1 with
b/a =2, where k = 27r/L, h= free-space wavelength and 8= d/h.

The most simplifying assumption neglects the dis-

continuity capacitance entirely and uses small-argu-

ment approximations for the Bessel functions. This

method considers the resonator as a foreshortened

coaxial or radial resonator and permits one to solve for

the resonant wavelength directly as

X = ~a [2&l in (rl/vO) ]l/z,

which was done by Terman3 and Slater.5 .4 better ap-

proximation consists of using asymptotic expansions for

the Bessel functions. This was done by Goddard,s who

was forced to solve an infinite set of simultaneous equa-

tions. Fortunately, the series for the coefficients of the

system of equations converged very quickly, thus per-

mitting a fairly rapid solution. A further approximation

was used by Marcuvitz,7 who replaced the right side of

(13) by ka(2ti)-’ and 2khm_’in (~eti-’), respectively, and

then solved the resonance equation graphically by using

curves of his radial functions. It should be noted that
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Fig. 3-Theoretical values of the resonant frequencies of radial TI1OIO
mode for resonator of Fig. 1 with b/a= 5, using methods of Marcu-
vitz and Goddard, and foreshortened-line approximation; com-
pared with experiment and with values calculated using the in-
tegral-equation method when Vd= O and when ya #O.

the left side of (13) is just the function which he defines

as the small radial cotangent.

A comparison of the resonant frequencies obtained

by using these different approximations with those

obtained from (13) is given in Fig. 3 for a resonator

with b/a =5. Fig. 3 also includes the solution of

(13) when the discontinuity capacitance is ignored.

Experimental values in this case are not too satisfactory

since frequency effects in region B cause the approxima-

tion for the discontinuity capacitance to be poor. As

mentioned in reference 1, the value for the discontinuity y

capacitance must be multiplied by a factor greater than

unity when the value of h/A becomes greater than about

0.2. This factor also becomes very large when lz/h

approaches 0.5. For the resonator under consideration,

the value of h/h is about 0.22 when 6 is 0.2.

Fig. 4 is another comparison of these approximate

methods for a resonator with b/a =2. Experimental

values in this case are reasonably close to the calculated

ones considering the fact that lzI’A is nearly 0.3 when 8

is 0.5. Further experimental confirmation is given in

Fig. 5, which is a set of comparison curves for a resonator

with b/a = 6. This figure also includes the radial TMOZO

mode, for which experimental values are quite good.

Comparison curves for the radial TMOZO mode in the

resonator of Fig. 4 and for the radial ~&f080 and TM040

modes in the resonator of Fig. 5 wrere obtained in refer-

ence 8 but are not shown here. However, the experi-

mental errors for these higher-order modes were also
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01 I t I t
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GAP RATl O 8=d/h

Fig. 4—Theoretical values of the resonaut frequencies of the radial
TAfQlo mode for the resonator of Fig. 1 with b/a= 2 are shown
using only the methods of Marcuvitz and Goddard. These are
compared with values obtained from the integral-equation
method and from experiment.
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Fig. 5—Same as Fig. 4 but with b/a= 6. The figure also
includes the radial TM020 mode.

quite low. In all the cases we have-considered, then, the

approximations of Marcuvitz and Goddard are satis-
factory for the lowest-order mode but give no informa-

tion at all regarding the higher-order modes.


