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(4), and (6). The guard plane half-width, d, is then de-
termined by (5). After choosing ka4, then 8, F(%’, 8), and
E(E’, §) are obtained by (8), which now defines b, the
strip half-width, from (7). Using (11), k. is readily
found, from which K(ks), K(k'), and in turn C are
determined.

Fig. 6 shows C, the capacitance of the strip-line per
unit length, as a function of &, the half-width of the
strip, for several values of d, the half-width of the
ground planes. For values of b less than 1.00, the curves
for d having values of 1.250 and infinity agree to about
one-quarter of one per cent. The asymptotic values arise
from exact expressions for the capacitance of parallel
plate condensers.

1t therefore follows that for d>1.25 and d>5+4-0.235,
the exact capacitance and approximate value obtained
by assuming infinite width ground planes agree within
one-quarter of one per cent. A similar statement may
be made for the characteristic impedance, since
Ro=+/moeo/C. The approximation is also valid for
smaller values of d providing a more severe restriction
is placed on the magnitude of &.
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Fig. 6—Capacitance per unit length for a strip-line having a strip
of width 2b centered between two ground planes each of width
2d. The ground planes are separated by unit distance.

Resonant Frequencies of Higher-Order Modes

in Radial Resonators
D. C. STINSON?

Summary—A summary of the relevant work on radial line dis-
continuities and radial line resonators is presented. A step-type dis-
continuity is analyzed using an integral equation formulation and the
results are applied to the calculation of the resonant frequencies of a
radial resonator. This method is verified by experiment and com-
pared with the foreshortened-line approximation and with the meth-
ods of Marcuvitz and Goddard, whose work is satisfactory for the
lowest-order TM mode. However, the present method is the only
one which is equally applicable to the calculation of the resonant
frequencies of TM modes possessing higher-order radial variations.

INTRODUCTION

ADIAL LINE discontinuities have been consid-
R ered quite completely by Whinnery! and by
Bracewell.? The former presents his data in the

form of curves and takes into account such factors as
the proximity of a shorting cylinder near the disconti-

1 Elect. Res. Lab., Univ. of Calif., Berkeley, Calif.

1 J. R. Whinnery, “Radial line discontinuities,” Elec. Lab., Gen-
eral Electric Co., D. F. #46293; June 22, 1944,

J. R. Whinnery and D. C. Stinson, “Radial line discontinuities,”
Proc. IRE, vol. 43, pp. 46-51; January.

2 R. N. Bracewell, “Step discontinuities in disk transmission
lines,” Proc. IRE, vol. 42, pp. 1543-1548; October, 1954,

nuity and the effect of higher-order, nonpropagating
modes. The latter treats only the simple step disconti-
nuity, with the step facing either the inner region or
the outer region, and takes into account radial vari-
ations by a cylindrical spread factor which is given by
families of curves. These two papers form a very com-
plete picture of radial line discontinuities.

Radial resonators have been considered by several
approximate methods,*® but these ignore the disconti-
nuity capacitance. Ordinarily, the discontinuity capaci-
tance is of the same order of magnitude as the capaci-
tance of the capacity loading of the gap, region 4, in
Fig. 1, if one considers the resonator as a foreshortened
radial or coaxial line resonator. A better method con-
siders the modes in both regions and matches them
across the aperture, » =¢. This method has been used

3F. E. Terman, “Radio Engineers’ Handbook,” McGraw-Hill *
Book Co., Inc., New York, N. Y., p. 268; 1943.

¢S. Ramo and J. R. Whinnery, “Fields and Waves in Modern
leszio,” John Wiley and Sons, Inc., New York, N. Y., pp. 404-412;

5 J. C. Slater, “Microwave Electronics,” D. Van Nostrand Co.,
Inc., New York, N. Y., p. 234; 1950.
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by Goddard® and Marcuvitz’ and is exact until they
introduce approximations for the discontinuity admit-
tance and the Bessel functions.

However, the treatment of Marcuvitz and Goddard
applies only to the lowest-order radial mode, i.e.,
T Moo mode. Their papers also include no experimental
checks on the approximations involved. Further, the
infinite-series method used by Goddard does not give
results which are as easy to apply or as accurate as
results obtained by using the integral-equation method,
which he mentions but does not use. In the work to
follow, the integral-equation method will be used to
obtain the discontinuity capacitance of a radial line
with a simple step and this result will then be applied
to the calculation of the resonant frequencies of a radial
resonator. Since the integral-equation method has been
applied to many problems, the theoretical treatment will
be very brief. A more detailed and rigorous treatment
of this problem can be found elsewhere.?

—

Fig. 1—Cross section of a radial resonator. Regions 4 and B are
connected at the aperture, indicated by the dotted lines.

FORMULATION OF THE INTEGRAL EQUATIONS

The geometrical structure of the resonator dictates
that the only nonvanishing field components in cylindri-
cal co-ordinates be Hy, E., E,, the last being absent for
the principal mode. The differential equations which
govern the spatial behavior of Hy, E,, and E, are

(G5 ot =+ )9 = 0
_t— — - — v, 8) =
97? r or 932 #? ¢

5}
—jweE(r, 3) = — Hy(r, 2)

dz

jweE.(r, z) (1)

d 1
= ( + >H¢(1’, Z)y
a7 7

6 L.. S. Goddard, “A method for computing the resonant wave-
length of a type of cavity resonator,” Proc. Cambridge Phil. Soc., vol.
41, part 2, pp. 160-176; August, 1945. R

7 C. G. Montgomery, R. H. Dicke, and E. M. Purcell, “Princi-
ples of Microwave Circuits,” McGraw-Hill Book Co., Inc., New
York, N. Y., ch. 8; 1948.

8 Elec. Res. Lab. Rep., Univ. of Calif., Series No. 60, Issue No.
105, December 15, 1953.
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where k=w(ue)?=(2nr/\), w=angular frequency,
A =free-space wavelength, u = permeability of free space,
e=dielectric constant of free space, and j= (—1)%/2. The
principal mode results from (1) when the z dependence
vanishes. Egs. (1) must be solved subject to the follow-
ing boundary conditions:

E,=0 on 7 = a, d§|z[_§
E.,=0 on r=5% 05|z = @
E.,=0 on |3z|=d 0gr=<a
E.=0 on lz!=h, aesS7v =
Also E, and H, are continuous at
r=a, 0= |3 =d. (3

A continuous solution for the entire resonator is con-
tingent upon equality of the respective tangential com-
ponents of electric and magnetic field across the aper-
ture between the two regions according to (3). This
insures the continuity of the normal component, E,.
Tangential and normal refer to the space location of the
field components relative to the direction of propagation
of energy (radially outward). The scalar function H, at
any point in either region can be expressed in terms of
integrals involving E, in the aperture. The continuity
relation (3) results in an integral equation to determine
the aperture field E,, and thence the electromagnetic
field everywhere in the resonator. Alternatively, we may
express the scalar function E, at any point in either
region in terms of integrals involving H, in the aperture.
The continuity relation (3) again gives an integral equa-
tion to determine the aperture field .

We may also introduce a principal-mode voltage and
current in each region as follows: the voltage at any
cross section in the resonator is defined as the negative
line integral of E, in the z direction while the current
at any cross section is defined as the line integral of the
principal-mode part of Hy about the 2 axis. The func-
tions thus defined satisfy the transmission line equa-
tions ordinarily given for radial transmission lines.” The
equations are not uniform since both the characteristic
impedance and propagation constant are functions of
the radius; nevertheless, they do make possible the
introduction of an equivalent radial transmission line
to represent the principal-mode voltage and current in
each region and a lumped shunt admittance to represent
the higher-order nonpropagating modes at the disconti-
nuity between the two regions.

The solutions of (1) consistent with the boundary
conditions (2) in the two regions are as follows:

Region A
Hg# = AoJ1(br) 4+ 2 A 1(N?)an(z)
ne=1
1 [
EA = — I:Aokfo(kr) + > Am)\m]()(?\mf)am(z)] 4)
]we m=1
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A = mr K Ad!
K4 = [(2d/mN\)? — 1]12
an(z) = cos (mmzd™1)
d
VA(y) = ——f EAds =
—a

I(Af) = 27T7’AOJ1(k1’).

It

il

— 2kdA Jo(kr) (fowe)™t

Region B

H¢B BOQl(kr) + Z Ban('Yn 7')18n<5)

1 S
Ef = — [Boon(kT) + Z Bn'YnQO('Y"y)B"(Z):I

j(J)E n=1
Yu = nwK,BPh!
K2 = [(2h/nN\)? — 1]112
8.(z) = cos(nwzh™")
0.(var) = Ji(yar) — Jo(¥ab) Vi(yur) N (72b)
0u(kr) = Ju(kr) — Jo(kB)N{(kr) N\ (R), i =0, 1.
R

— | EBdz = — 2EhBy(kr) (jwe)

—h

(5)

VE(r) =

IB(r) = 2arBoQ1(kr).

We may now use the orthogonality properties of the
circular functions to solve (4) and (5) for the coefficients
A and B, in terms of E,. These coefficients are then
substituted back into the expressions for Hy4 and H®
in (4) and (5) after replacing 4, and B¢ by the corre-
sponding expressions for the principal-mode currents.
Now, since H, is continuous at the aperture according
to (3), we may equate the expressions just derived and
multiply by 27a to obtain

] d
T4 4+ 2awe Y, Eom f E(@)an(?)om(z)ds’
m=1 —d

w d
= I% + j2qew Z Dgn 8(3/)671(5,)8”(2)012/’

n=1 —d

lIA
lIA

r=a,0 Iz’ d, (6)

where
() — Bile, s — BFla, 2)
Eom = J100m0) [Kot To(hna) |2
Do = Q1(vn0) [K,BQo(vna) 71
Since E, is continuous at r =a from (3), it may be seen

from the expressions for the voltages in (4) and (5) and
the definition of E(z) that

d
VA =VB =V = —f E(x)dz at 7= a.
—d
Moreover, the discontinuity admittance® is just the

9 Ramo and Whinnery, op. cit., p. 373.
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discontinuity current, /4 —I2, divided by V.!° Conse-
quently, we may construct a variational principle for
the discontinuity admittance by multiplying the in-
tegral equation (6) by E(2), integrating over (—d, d),
and then dividing theresultant equation by [ /% ,E(z)dz 2.
We obtain

d —2 ] d 2
Cy= 2ae|: B(z)dz] {Z Eo,,,[ €(z)am(z)dz]

- g Do{ f_zﬁ(Z)ﬁn(Z)d{r}, %

which expresses the discontinuity capacitance in terms
of the aperture electric field E(z), which is homogeneous
in E(2), and which is stationary with respect to the first
variation of E(z) about its correct value determined
by (6).

Let us now derive a similar expression for the dis-
continuity impedance in terms of the aperture magnetic
field 3¢(2). To do this we return to (4) and (5) and solve
for A, and B, in terms of H,, and A, and B, in terms
of the corresponding expressions for the principal-mode
voltages. Since F,. is also continuous at the aperture
according to (3), we may equate these expressions just
derived and, after multiplying through by 2jwed?, ob-
tain

3 d
— jwedV 4+ 27 D Eout | 30(5 ) an(s’)an(z)ds’

m=1 —d

© d
= — jweddV + 215* Doyt f 50() 8= () 2,
—d

n=1

r=a,0= |z|=d, (8a)

o h
0= — jwedsV + 2182 ), Dou~t | 30(2")Ba(2")Bn(2)d7’,

n=1 —h

r=ad= |z| £h (8b)

where

3(z) = Hg'(ae, 2) = H(q, 2),
6§ =d/h,

and where (2) was used to obtain (8b). To derive our
second variational principle, we multiply the expres-
sions in (8) by #C(z) and integrate each over its respec-
tive range of validity. Recognizing that

d

30(z)ds = dI4(wa)™?
—a

h

5¢(z)dz = hIB(wa)™!
—n

and also noting that the expression resulting from (8b)

1o The voltages defined here are double those defined in reference
7 and, consequently, the discontinuity capacitance will be half that
obtained in reference 7 since the currents are the same. Naturally,
the resonant frequencies of the resonator of Fig. 1 will be the same
as those of the resonator in reference 7 since the modes are the same.
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is still equal to zero, we may add it to the expression
resulting from (8a) and divide through by [[%,5(z)dz]?
to obtain

(S

VS = w3

where
d h
J =4t J(z)ds — ! 3(z)dz = (wa)~1(I4 — IB)
—d —h
= (Wd)‘lVyd

0 h 2
B = it 3 Dot [ sc@m(@dﬂ
n=1 —h

e ZEM—{ f d}C(z)am(z)dz:l :

Thus we find that

Cat = — 2(ae)7'J 8. )

We have now derived the two desired variational
principles, (7) and (9), for the discontinuity capaci-
tance. If we substitute the true &(2) into (7) and the
true 3C(z) into (9), obtained from (6) and (8), respec-
tively, both variational principles will vield the same
value for C4. However, the two values of Cj; resulting
from approximate E(z) and J¢(z) will differ, but both
will be close to the true Cy if the trial functions are
chosen appropriately. The errors in C; are of the order
of magnitude of the squares of the errors in &(z) and
3C(z). Since the stationary quantity is real, (7) will yield
a value below the true one while (9) will vield a value
above it.!'2 [t may also be shown that the first vari-
ation of the discontinuity capacitance vanishes with the
first variation of €(z) and 5C(z), but the proof will be
omitted here.

APPLICATION OF THE VARIATIONAL PRINCIPLES

At this point one would ordinarily assume E(s) as a
Fourier cosine series in the interval (—d, d) and obtain
Cufrom (7) in terms of the Fourier coefficients. Applica-
tion of the variational principle would then reduce the
expression for Cy to a simpler one. Similarly, 3¢(z)
would be obtained in terms of the Fourier cosine series
for E(z) and the resulting expression would be substi-
tuted into (9); again application of the variational
principle would result in a simpler expression for Cy™.
Since these simpler expressions are exact, approxima-
tions may be effected to any desired degree. However,
for a first approximation, one might consider only the
leading term in each of the expressions and thus avoid
further calculations. If we do this, we find that when the
aperture electric field is equal to a constant, G, (7)
becomes

1t H. Levine and C. H. Papas, “Theory of the circular diffraction
antenna,” Jour. Appl. Phys., vol. 22, pp. 29-43; January, 1951.

2 [ W. Miles, “The equivalent circuit for a plane discontinuity
in a cylindrical wave guide,” Proc. IRE, vol. 34, pp. 728-743; Oc-
tober, 1946.
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0

Cqg= — 2aer2 Z %DOnSnO(E)v

n=1

(10)

where 5,0(8) = #3562 sin? (n7d).

In order to evaluate C;' using (9), we must deduce
an appropriate expression for 3(z). We may do this by
solving for Hs® in (5) in terms of E(2) and then let
7 =a to obtain

3(z) = (2ma)"TB 4 jwer™'G D, DonbonBu(2),
n=1
where bo, = 2k (nm) ! sin (nwd). We now insert this value
of 3(z) into (9) and find that the expression for Cy™
reduces to the following, provided one considers only
the leading terms:

w -1
—_ 2(06)_1d2|: Z ZDgnbOnbop:I

n=1 p=1

Cq;t

]

— 2qer* Z 1D ¢nS510(8)

n=1

— %ded"z Z Z DonbOnbOP'

n=1 p=1
nEp

or Cq=
(11)

It may be seen that Cq as given by (11) is larger than
Cs as given by (10) by the term involving the double
summation. Although this term is not as small as de-
sirable, experimental evidence shows that the first term
in (11) gives satisfactory results. Considering the first
term then and simplifving it by separating the part
containing the Bessel functions, we find that

2ae had
Ca= ha[so (8) — 2 (1 4 1nDox) suo (5)] ,  (12)
- A==l

where So(8) = 2 .- 15.0(8) is the lowest-order Hahn'® func-
tion. These functions have been considered quite
thoroughly by Goddard,™* who defines a general class of
functions that for low orders reduce to the Hahn func-
tions. He also derives recurrence relations for his func-
tions and tabulates the most common ones.

RESONANT FREQUENCIES

An electromagnetic system is considered resonant
when the average electric and magnetic energies within
the system are equal. Since by an energy theorem® the
total susceptance of an electromagnetic system is pro-
portional to the difference between the average electric
and magnetic energies stored in the system, it follows
that a resonant frequency is one that causes the total
susceptance to vanish. Let us consider the total sus-
ceptance of the resonator at the discontinuity. The sus-
ceptance looking in the direction of decreasing radius

BW. C. Hahn, “A new method for the calculation ol cavity
resonators,” Jour. Appl. Phys. vol. 12, pp. 62-68; January, 1941.

¥ L. S. Goddard, “On the summation of certain trigonometric
series,” Proc. Cambridge Phil. Soc., vol. 41, part 2, pp. 145-161;
August, 1945.

15 Montgomery, Dicke and Purcell, op. cit., p. 135.
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is just the input susceptance of the inner radial trans-
mission line while the susceptance looking in the direc-
tion of increasing radius consists of the sum of the dis-
continuity susceptance and the input susceptance of the
outer radial transmission line. However, we already
have the resonance condition from the expression for &
in (9) if we change the form slightly as below

Vo= VU4 4+ VB = 0.

- If we divide through by the characteristic admittance of
region B, we can obtain the resonance equation in
terms of relative admittances with the characteristic
admittance of region B as the base. This form is much
simpler to solve graphically since multiplying constants
are kept to a minimum. Following these suggestions
and using the values for the admittances from (12), (4)
and (5), respectively, the resonance equation reduces to

0:1(ka)Q5 (ka) = 6T (ka) Ty (ka) + 2khr3S0(5), (13)

where the term in (12) involving Dy, has been dropped.
If we multiply each side of (13) by —jmah™1eV2u712,
then the first term is the admittance of the outer radial
line, the second term is the negative admittance of the
inner radial line, and the last term is the negative dis-
continuity admittance when one ignores radial wvari-
ations. Since the only approximation in (13) is the one
concerning radial variations of the discontinuity capaci-
tance, (13) should be the simplest expression which is
likely to yield reasonable results under general condi-
tions. The disadvantage to using (13) lies in the fact
that one must resort to a graphical sclution, which in
this case is done by plotting each term of (13) versus
ka with the ratios b/a, d/h and k/a as parameters. This
is illustrated in Fig. 2 for the radial T Mo mode in a
resonator with &/a=2. Since y4 and y® both behave as
periodic functions, the higher-order radial 7 modes
may be found in the same manner by continuing the
curves to larger values of ka.

It is also interesting to note that the radial resonator
may be considered as a transition between a coaxial
and a cylindrical resonator, i.e., when 6=0 and 6=1,
respectively. This follows directly from resonance equa-
tion (13) in the following manner. When 6 is zero the
relative admittance of region B, ¥E, becomes infinite.
Consequently, the poles of 98 give the resonant frequen-
cies of the radial resonator when § is zero. However, the
poles of yB are just the solutions of Jo(ka)No(kb)
— Jo(kb) No(ka) =0, which is the equation whose roots
determine the resonant frequencies of a coaxial reso-
nator'® sustaining 7'M modes possessing only radial vari-
ations. On the other hand, when 6 approaches unity, the
discontinuity capacitance vanishes and we are left with
y8=y4 which reduces to the equation ordinarily given
for the resonant frequencies of cylindrical T Mone
modes.”

1 f{, B. Dwight, “Table of roots for natural frequencies in co-
axial type cavities,” Jour. Math. Phys., vol. 27, pp. 84-89; April,

1948. ‘ _
17 Ramo and Whinnery, op. ¢it., p. 337.
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If one wishes a more accurate solution to the reso-
nance equation (13), it is possible to use values for the
discontinuity capacitance obtained from references 1 or
2. This has not been done here since (13) is sufficiently
accurate for most purposes. In fact, as mentioned in the
Introduction, most writers have assumed that all the
dimensions of the resonator are small compared with
wavelength and have used approximate forms of (13).
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Fig. 2—Presentation of the resonance equation, yB(ka)=28"1y4(ka)
~+-94(8), for the radial 7Moo mode in the resonator of Fig. 1 with
b/a =2, where k=2x/\, N ={ree-space wavelength and 8§=d/h.

The most simplifying assumption neglects the dis-
continuity capacitance entirely and uses small-argu-
ment approximations for the Bessel functions. This
method considers the resonator as a foreshortened
coaxial or radial resonator and permits one to solve for
the resonant wavelength directly as

A = 7a[257 In (r1/70) |12,

which was done by Terman® and Slater.® A better ap-
proximation consists of using asymptotic expansions for
the Bessel functions. This was done by Goddard,® who
was forced to solve an infinite set of simultaneous equa-
tions. Fortunately, the series for the coefficients of the
system of equations converged very quickly, thus per-
mitting a fairly rapid solution. A further approximation
was used by Marcuvitz,” who replaced the right side of
(13) by ka(26)~! and 2khn—'In(%ed™"), respectively, and
then solved the resonance equation graphically by using
curves of his radjal functions. It should be noted that
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Fig. 3—Theoretical values of the resonant frequencies of radial 7Moo
mode for resonator of Fig. 1 with b/a =35, using methods of Marcu-
vitz and Goddard, and foreshortened-line approximation; com-
pared with experiment and with values calculated using the in-
tegral-equation method when Y;=0 and when V,s0.

the left side of (13) is just the function which he defines
as the small radial cotangent.

A comparison of the resonant frequencies obtained
by using these different approximations with those
obtained from (13) is given in Fig. 3 for a resonator
with bd/a=5. Fig. 3 also includes the solution of
(13) when the discontinuity capacitance is ignored.
Experimental values in this case are not too satisfactory
since frequency effects in region B cause the approxima-
tion for the discontinuity capacitance to be poor. As
mentioned in reference 1, the value for the discontinuity
capacitance must be multiplied by a factor greater than
unity when the value of /X becomes greater than about
0.2. This factor also becomes very large when #&/\
approaches 0.5. For the resonator under consideration,
the value of /N is about 0.22 when § is 0.2.

Fig. 4 is another comparison of these approximate
methods for a resonator with b/¢=2. Experimental
values in this case are reasonably close to the calculated
ones considering the fact that %/\ is nearly 0.3 when §
is 0.5. Further experimental confirmation is given in
Fig. 5, which is a set of comparison curves for a resonator
with 5/a=6. This figure also includes the radial T Moz
mode, for which experimental values are quite good.
Comparison curves for the radial T Mg mode in the
resonator of Fig. 4 and for the radial T"Msp and T Mo
modes in the resonator of Fig. 5 were obtained in refer-
ence 8 but are not shown here. However, the experi-
mental errors for these higher-order modes were also

GAP RATIO 3 =4d/h

Fig. 4—Theoretical values of the resonaut frequencies of the radial
T Moo mode for the resonator of Fig. 1 with 6/a=2 are shown
using only the methods of Marcuvitz and Goddard. These are
compared with values obtained from the integral-equation
method and from experiment.
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Fig. 5—Same as Fig. 4 but with /e =6. The figure also
includes the radial 7" g2 mode.

quite low. In all the cases we have-considered, then, the
approximations of Marcuvitz and Goddard are satis-
factory for the lowest-order mode but give no informa-
tion at all regarding the higher-order modes.



